Volume : 1, Issue : 1
January - June 2011

international journal of

ADVANCES IN
SOFT COMPUTING
TECHNOLOGY

Editor-in-Chief
Dr.Vaka Murali Mohan

ISSN : 2229 - 3515

REsS!
Y
5 =) o
I} [==

7

Published by
BHAVANA RESEARCH CENTER

©2011BRC

Impact of Multiple attacks and damages

on web based applications and security testing

Pratap Singh, S'* and Ekambaram Naidu, M*
1.TRR College of Engineering, Inole (V), Patancheru (M), Hyderabad, AR, INDIA.
2.TRR College of Engg. & Tech, Inole (V), Patancheru (M), Hyderabad, AF, INDIA.

KeyWords:
web application,
web security,

Abstract: Now a days, many Business to Business (B2B), Customer to Business (C2B) and Business to Customers (B2C)
transactions are being done through web based applications. This method of web based application’s service is
attracting the attention of both small and medium-sized businesses and to those providers of application-based
services because of its easier access, more affordable fees, and greater efficiency in delivering services to massive
numbers of receivers. However, this web based applications needs to face several technical challenges, among which
Data security is of top priority for most users because their data reside on remote servers whose resources are shared
among different peoples over the globe. So there is a great need of Data Security and applications security. In this
paper, we discuss about what you can do to protect your organizations sensitive data, and also we discuss an

HTTP attacks,
Secure Sockets
Layer (SSL),
firewalls.
approach forimproving yourorganization's Web application security.
1.Introduction:

s businesses grow increasingly dependent upon

Web applications, these complex entities grow more

difficult to secure. Most companies equip their Web
sites with firewalls, Secure Sockets Layer (SSL), and network
and host security, but the majority of attacks are on
applications themselves - and these technologies cannot
prevent them. In the Open System Interconnection (OSI)
reference model, every message travels through seven
network protocol layers. The application layer at the top
includes HTTP and other protocols that transport messages
with content, including HTML, XML, Simple Object Access
Protocol (SOAP) and Web services.

This paper focuses on application attacks carried by
HTTP HTTP attacks are one the most popular hacking
techniques. Hackers chiefly target a HTTP request and
manipulate or modify the requests to cause the requisite
damage. The attacks are usually performed using HTTP port
80 or other HTTP communications. To carry out effective and
hassle-free web communication, HTTP is the most
widespread protocol utilized today. Thus, web attacks related
to HTTP are the most common ones occurring in the online
sector.

*Mr.S. Pratap Singh
Associate Professor
Dept. of Computer Science & Engineering
TRR College of Engineering
Inole (v), Patancheru (m), Hyderabad, AP
Ph.No.:91-9701457154
E-Mail: pratap_545@yahoo.co.in

A web server must control port 80 to transfer an HTTP
request for a web page in order to operate the website. Since
the requests are processed through HTTP attackers
manipulate or change these HTTP requests to gain entry into
the web server. Teamed with the legitimate entry, they get
the 'green signal' to bypass firewalls and several other
security standards. Easy access to the web server assists them
to pose any kind of attack. Defectively written applications
are more susceptible to such attacks. HTTP attacks bear no
classification as such. However, HTTP attacks are possibly
categorized into 'buffer overflow, 'SQL Injection) and 'HTTP
request smuggling attacks'and more as showninfigure 1

Damages/impact to life, property
Motive

i 3 i Cvher crimes
Mational Security] vher crimes

Organized crimes,

Indlustrial comnpelitons ey
esplonage Advanced perststence threals
Hackers, crackers
Money gai Sophisticated tools, expertise,
substantial resources
[Revengel Insider
Tustdler Information
Frestige thrll
Seript kiddies Substantial time , tools and social enginearing
Curiosity Serips, toold, web based how tos

Adversery

Fig.1. Relationship b/w the web based Applications
attacks and adversary to the motivation of attack.

A web application security risk is multiplying and presents a
number of unique security challenges. One is exposure
because web applications reach millions of users, they also
reach millions of potential hackers. Web applications stretch
across multiple infrastructure tiers and incorporate many
process layers, elements that expose them to a wide range of
prospective attackers.

International Journal of Advances in Soft Computing Technology, Vol.1 (1), January - June, 2011 @ISSN: 2229-3515

Pratap Singh, S and Ekambaram Naidu, M |

As web applications get more complex, so do their
vulnerabilities; as they become more useful and pervasive,
they become higher value targets. And cybercriminals are
taking note.

2. Attacks and Damages/problems:

As the ensuing consequences of HTTP attacks result in the
easy admission of the hacker into the web server, thus
allowing him/her to cause immense damage. He/she can
delete information, steal data or add info. He/she can cause
endless harm to a website and even go to the extent of
closing it down. If a website gets affected, it can result in
serious damage to its online business, tarnish the website's
image or make the business face huge financial loss. Thus, to
prevent such mishaps, an enterprise must conduct thorough
check of the user input data prior to transferring them for
some other process. Moreover, constant examination during
the development cycle for any vulnerability will expose the
existing weak points.

2.1Bufferoverflow: Abufferoverflowisan exploitthat takes
advantage of a program that is waiting on a user's input.
There are two main types of buffer overflow attacks: stack
based and heap based. Heap-based attacks flood the
memory space reserved for a program, but the difficulty
involved with performing such an attack makes them rare.
Stack-based buffer overflows are by far the most common.
2.25QL Injection: ASQL injection attack consists of insertion
or "injection” of a SQL query via the input data from the client
to the application. SQL injection attacks allow attackers to
spoof identity, tamper with existing data, cause repudiation
issues such as voiding transactions or changing balances,
allow the complete disclosure of all data on the system,
destroy the data or make it otherwise unavailable, and
become administrators of the database server A successful
SQL injection exploit can read sensitive data from the
database, modify database at a (Insert/Update/Delete),
execute administration operations on the database (such as
shutdown the DBMS), recover the content of a given file
present on the DBMS file system and in some cases issue
commands to the operating system. SQL injection attacks are
a type of injection attack, in which SQL commands are
injected into data-planeinputin order to effect the execution
of predefined SQL commands.

2.3 Cross Site Scripting (XSS): XSS flaws occur whenever an
application takes user supplied data and sends it to a web
browser without first validating or encoding that content.
XSS allows attackers to execute script in the victim's browser
which can hijack user sessions, deface web sites, possibly
introduce worms, etc.

2.4 Malicious File Execution: Code vulnerable to remote file
inclusion (RFI) allows attackers to include hostile code and
data, resulting in devastating attacks, such as total server
compromise. Malicious file execution attacks affect PHP, XML
and any framework which accepts filenames or files from
users.

©2011BRC

2.5 Insecure Direct Object Reference: A direct object
reference occurs when a developer exposes a reference to an
internal implementation object, such as a file, directory,
database record, or key, as a URL or form parameter. Attackers
can manipulate those references to access other objects
without authorization.

2.6 Cross Site Request Forgery (CSRF): A CSRF attack forces a
logged-on victim's browser to send a pre-authenticated request
to a vulnerable web application, This then forces the victim's
browser to perform a hostile action to the benefit of the attacker.
CSRF canbe as powerfulas the web application that it attacks.
2.7Information Leakage and Improper Error Handling:
Applications can unintentionally leak information about their
configuration, internal workings, or violate privacy through a
variety of application problems. Attackers use this weakness
to steal sensitive data, or conduct more serious attacks.
2.8Broken Authentication and Session Management:
Account credentials and session tokens are often not
properly protected. Attackers compromise passwords, keys,
orauthentication tokensto assume other users'identities.
2.9Insecure Cryptographic Storage: \Web applications rarely
use cryptographic functions properly to protect data and
credentials. Attackers use weakly protected data to conduct
identity theftand other crimes, such as credit card fraud.

2.10 Insecure Communications and failure to Restrict URL
Access: Frequently, an application only protects Sensitive
functionality by preventing the display of links or URLs to
unauthorized users. Attackers can use this weakness to
access and perform unauthorized operations by accessing
those URLs directly. This are the few of the attacks, apart from
thistypes of attacks there are many more.

3. Preventive measures: In order to provide the security to
web based applications some of the preventive measures
against the type of attack as has to follow as shown in the
figure 2.

3.1 Guidelines for providing security for Web applications:
By using security-specific processes to create applications,
software development teams can guard against security
violations like those shown in table 1. Specifically, you can
apply several basic guidelines to existing applications and
new or reengineered applications throughout your process
to help achieve greater security and lower remediation costs,
suchas:

Fine input
validation

Providing secure
Authenticating configuration
users B Handling
: : exceptions

Protecting
Sensitive data

Denial of
service - e

Concurrency B =

O— Application - O0— Application ©

i Protecting

: sensitive : . . .

Y odata : : Auditingand
H . logging

Coarse input Authorizing
validation users

Preventing Preventing
parameter session
manipulation hijacking

Fig.2. Preventive measures against the web based attacks.

International Journal of Advances in Soft Computing Technology, Vol.1 (1), January - June, 2011 @ISSN: 2229-3515

Impact of Multiple attacks and damages on web based applications and security testing ©2011 BRC

Table 1: Web application security preventives

Description

Common causes

Preventive
measures

Description

Common causes

Preventive
measures

Impersoning:

Information Disclosure:

Typing a
different user's
credentials or

*Using
communications
based authentication

Use stringent
authentication and
protection for
credential

Revealing
personally
identifiable
information(PIl)
such as
passwords and
credit card data,
plus information
aboutand / or
its host
machines.

* Allowing an
authenticated
user access to
other user's
data.
Allowing
sensitive
information on
unsecured
communication
channels
* Selecting poor
encryption
algorithms and
keys

*

* Store Pllon a
session
(transitory)
rather than
permanent
basis.

* Use hashing
and encryption
for sensitive
date whenever
possible.

* Match user
data to user
authentication

Denial of Service(DoS):

(e.g..defacing a
web site.
Altering data in
transit)

unwanted code
* Running with
escalated
privileges
* Leaving sensitive

changing © allloZv iccess oan information using:
; user's data :
;Z?akrfect);r to *Using unencrypted « Operatin
impersonate a credentials that . Fs)tem(OgS)
can be captured ysten
user or pretend supplied
) and reused
th.at.the cookie | Storing credentials frameworks
ongmates from| in cookies or * Encrypted tokens
a different parameters such as session
server *Using unproven cookies
authentication
methods or * Digital signatures.
authentication
from the wrong
trust domain.
*Not permitting
client software to
authenticate the host
Tampering:
changing or * Trusted data Use OS security
deleting a sources without to lock down
resource validation files, directories
without * Sanitizing input and other
authorization to prevent resources
execution o

Validate your
data Hash and
sign data in
transit(by using
SSL or IPsec, for

* Flooding
Sending many
messages or
simultaneous
requests to over
whelm a server.

* Lockout
sending
a surge of
requests to
force
a slow server
response by
consuming
resources or
causing the
application to
restart.

* Placing too
many
applications
onasingle
server or
placing
conflicting
applications
on the same
server

*Neglecting to
conduct
comprehensive
unit testing.

* Filter packets
using a firewall

*Use aload
balancer to
control the
number of
requests from
a single source.

*Use a
synchronous
protocols to
handle
processing
intensive
requests and
errors recovery

Elevation of Privilege:

data example)
unencrypted
Repudiation:
Attempting to | * Using a week * Jse
destroy.Hide or |~ ©rmissing stringent
alter evidence authorization authenti-
that an action and authentication cation,
process .
occurred (e.q. transaction
Qelet|ng Iogs, * Logging improperly Iggg and
impersonating digital
a user to * Allowing sensitive signatures.
request information on
changes) unsecured * Use Audit.
communication
channels

Exceeding
normal access
privileges to gai
administrative
rights or access
to confidential
files

* Running web
server
processes as
“root” or
“administrator”.

* Using coding
errors to allow
buffer
overflows
and elevate
application into
a debug state.

* Use fewest-
privileges
context
whenever
possible.

* Use type-safe
languages and
compiler
options to
prevent or
control buffer
overflows.

International Journal of Advances in Soft Computing Technology, Vol.1 (1), January - June, 2011 @ISSN: 2229-3515

Pratap Singh, S and Ekambaram Naidu, M |

Discover and create baselines: Conduct a complete
inventory of applications and systems, including technical
information (e.g., Internet Protocol [IP], Domain Name System
[DNS], OS used), plus business information (e.g, Who
authorized the deployment? Who should be notified if die
application fans?). Next, scan your Web infrastructure for
common vulnerabilities and exploits. Check list serves and
bug tracking sites for any known attacks on your OS, Web
server and other third-party products. Prior to loading your
application on a server, ensure that the server has been
patched, hardened and scanned. Then, scan your application
for vulnerabilities to known attacks, looking at HT TP requests
and other opportunities for data manipulation. And, finally,
test application authentication and user-rights management
featuresand terminate unknown services.

* Assessand assign risks

*Shield yourapplication and controldamage

*Continuously monitorand review
3.2Understanding the Web application lifecycle
The Rational Unified Process, or RUP, solution delivers a
widely used iterative process framework for developing Web
applications based on industry best practices. The core
phases of the framework (which may require two or more
iterations to complete) are: Inception, Elaboration,
Construction and Transition.

Each of the four phases of the Rational Unified Process
inception, elaboration, construction and transition spans
multiple disciplines and may require multiple iterations.
Fixing a design error after a Web application has been
deployed costs approximately 30 times more than
addressing it during design. To help prevent expensive fixes,
enterprises can build application security testing approaches
into theirdevelopmentand delivery process.

3.3 Considering theright testing approaches

To help prevent expensive fixes, organizations need to build

application security testing approaches, such as Black Box,

White Box and Gray Box testing, and also automated testing

into their development and process alongside other quality

management measures

4. Four strategic best practices for protecting Web

applications:

To address security-related issues as they pertain to

Web applications, organizations can employ four broad,

strategic best practices.

1. Increase security awareness by training, communication
and monitoring activities, preferably in cooperation with a
consultant.

2. Categorize application riskand liability

Setazero-tolerance enforcement policy

4. Integrate security testing throughout the development
and delivery process
In addition to making security an integral part of the

application development and delivery process, you can

integrate security tests right into the application you are

building to conduct event-driven testing. In this case, where a

user makes a request and the application responds, the test

compares the response to an expected or previously stored

w

©2011BRC

response to determine whether the system is operating
properly or not. How you implement the code to review
requests depends on the application architecture. For
example, your spy component might be a mock data access
object, a proxy or a class that inherits from the front-end
service.You can also create code specifically foratest that you
insert into the data stream to supply reporting data needed
by the testing framework. Coordinating the testing objects
gives you comprehensive, fine-grained control of a range of
tests. You can perform these tests using either black-box or
white-box testing, improving your chances of catching

security problems early in the lifecycle before they pose a

serious business risk.

5.CONCLUSION:

In this paper, we discuss about what you can do to protect your

organizations sensitive data, by means of taking preventive
measures and also we discuss an approach for improving your
organization's Web application security by means of notonly to
perform applications testing but also to do the system security
testing, for all the web based applications. Despite these
satisfying results, alot remains to be done.

6.REFERENCES:

[1] Specifcation-Based Unit Testing of Publish/Subscribe
Applications. Anton Michlmayr,Pascal Fenkam,
Schahram Dustdar 26th [EEE International Conference o n
Distributed Computing SystemsWorkshops(06)

[2] L.Baresi,C.Ghezzi,&L.Zanolin.Modeling &validation o f
publish/subscribe architectures. In S. Beydeda & V.
Gruhn, editors, Testing Commercial-off-the-shelf
Components and Systems, pp 273-292. Springer
Verlag,2005.

[3]1 C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automatedtesting based on java predicates. In
Proceedings of the 2002 International Symposium on
SoftwareTestingand Analysis (ISSTA), Italy, July 2002.

[4] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T.
Leavens,K.R.M.Leino,and E.Poll. An overview ofjml tools
and applications. International Journal on
Software Tools for Technology Transfer (STTT),
7(3):212232,2005.

[5] Y.CheonandG.T.Leavens.Thejmland junit way of unit
testing and its implementation. Technical
Report TR #04-02a, Department of Computer
Science, lowa State University, 2004.

[6] J. Dingel and H. Liang. Automating comprehensive
safety analysis of concurrent programs using verisoft a n d
txl. In Proceedings of the International
Symposium on Foundations of Software
Engineering (ACM SIGSOFT 2004/FSE-12), Nov. 2004.

[71 P. Fenkam, H. Gall, and M. Jazayeri. A systematic
approach to the development of event-based
applications. In roceedings of the 22nd IEEE
Symposium on Reliable DistributedSystems (SRDS
2003), Florence, Italy.IEEE ComputerPress, October 2003.

[8] L. Fiege, G.M"uhl, and F. C. G artner. A modular
approachto build structured event-based systems. | n
SAC '02: Proceedings of the 2002 ACM
symposium on Applied computing, pages 385392, New
York, NY, USA, 2002. ACM Press.

International Journal of Advances in Soft Computing Technology, Vol.1 (1), January - June, 2011 @ISSN: 2229-3515

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

